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ABSTRACT
In modern connected healthcare applications, wearable devices
supporting real-time monitoring and diagnosis have become main-
stream. However, wearable systems are exposed to massive cyber-
attacks that threaten not only data security but also human safety
and life. One of the fundamental security threats is device imper-
sonation. We therefore propose PHY-IDS; a lightweight real-time
detection system that captures spoofing attacks leveraging on body
motions. Our system utilizes time series of physical layer features
and builds on the fact that it is non-trivial to inject malicious frames
that are indistinguishable with legitimate ones. With the help of
statistical learning, our system characterizes the signal behavior
and flags deviations as anomalies. We experimentally evaluate PHY-
IDS’s performance using bodyworn devices in real attack scenarios.
For four types of attackers with increasing knowledge of the de-
ployed detection system, the results show that PHY-IDS detects
naive attackers with high accuracy above 99.8% and maintains good
accuracy for stronger attackers at a range from 81.0% to 98.9%.

CCS CONCEPTS
• Security and privacy→ Intrusion/Anomaly detection;
• Human-centered computing→Wearable devices.
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1 INTRODUCTION
In body area networks (BANs), wirelessly connected wearable de-
vices play an influential role in the revolution of healthcare appli-
cations, such as vital signs monitoring for remote monitoring and
diagnostics. Although these systems support critical functionality,
a lack of proper security protection is quite common [8]. Most
reported security attacks are related to spoofing attacks where
a malicious party impersonates another device because it can be
exploited to launch many other sophisticated attacks. Through
spoofing attacks, adversaries can not only report false data but also
mislead the diagnose of the user’s physical health condition and
create life-threatening errors in subsequent treatment.

Spoofing attacks forge higher layer identities, such as MAC and
IP addresses, or compromise authentication protocols [7]. Physical
layer features in wireless channels are difficult to modify at will
because of the spatial separation of sender and receiver and are
preferable in security threat prevention. Our system analyses the
time series of received signal strength indicator (RSSI), which is the
power level of a received frame measured at the receiver’s antenna.
It is non-trivial for an attacker to send frames that are received with
a signal level indistinguishable from the legitimate data sent over
a dynamic wireless channel. A physical layer spoofing detection
system is an essential complement to protect wearable devices
against potentially life-threatening attacks.

Using RSSI to detect spoofing devices is not new, but all existing
research require the RSSI measurements from several access points
in a stationary setup [1, 11]. These approaches rely on clustering al-
gorithms to analyze the overall RSSI statistics, which are sensitive to
device positional changes. In BANs, human body movement makes
it impossible to apply existing methods to distinguish spoofing
attackers [14]. Moreover, wearable devices are generally designed
with limited processing capability, storage space and power re-
sources. Therefore, in practical implementation, security systems
that require either multiple supporting devices, a large amount of
data or heavy computation algorithms are problematic.

To fill in the gaps, we propose PHY-IDS, a spoofing intrusion
detection system (IDS) specifically for wearable devices leveraging
body motion and lightweight statistical algorithms. PHY-IDS can
identify a single frame from an impersonating device by analyz-
ing RSSI time series. With body movement, the RSSI behavior of
off-body devices differ from the on-body devices, and the on-body
devices at different positions also differ from each other. This diver-
sity in feature dynamics is used to identify frames that violate the

https://doi.org/10.1145/3396870.3400010
https://doi.org/10.1145/3396870.3400010
https://doi.org/10.1145/3396870.3400010


WearSys ’20, June 19, 2020, Toronto, ON, Canada Wenqing Yan, Sam Hylamia, Thiemo Voigt, and Christian Rohner

regular pattern of the wireless signal from legitimate wearables. In
particular, easy-to-collect audit data and light algorithms make it
easy to deploy our system on wearable constrained devices. In this
work, we make the following contributions:

(1) We propose a purely RSSI based IDS to detect spoofing at-
tacks under body motions. With the help of statistical learn-
ing methods, our system uses distinct low-resolution pat-
terns in wireless links to identify a single suspicious frame
from malicious devices.

(2) We propose one naive and three smart attack models that
acquire increasing knowledge of the deployed system and
have learning capability.

(3) The system is evaluated with wearable devices on different
positions in real attack scenarios, including on-body and off-
body attackers. The results show that our system can detect
naive attackers accurately, and maintains good accuracy
even for sophisticated attackers.

The rest of paper is organized as follow. An overview of the related
work is given in Section 2. Then, Section 3 defines the problem
and observations of unique BAN channel characteristics. In Section
4, the PHY-IDS detailed system design are presented, followed
by attack models in Section 5. After that, Section 6 presents the
experiment setup and evaluation results. We finally conclude this
paper in Section 7.

2 RELATEDWORK
In this section, we introduce three types of related work to de-
fend spoofing attacks. The first approach limits the communication
range, the second builds on cryptographic mechanisms, and the
last one is the detection of anomalies, either based on cross-layer
or physical-layer information.
(1) Proximity-based Methods: For BAN security protection, limiting
the communication range is an intuitive method to secure wearable
systems since devices are constrained to a body. A suitable option is
near-field communication technology, but research shows that an
attacker with a high-gain antenna can access devices even outside
the intended range [4]. The ultrasonic distance-bounding scheme
introduced by Rasmussen et al. [9] solves this vulnerability but
requires extra sonic transceivers. Our system utilizes the differences
in signal behavior to detect adversaries and hence mitigates this
vulnerability without any hardware modification.
(2) Physical Layer as Source of Randomness: The unique physical
properties of the wireless medium are powerful sources of random-
ness that can be used for secure key generation [10, 12]. Shi et
al. [12] leverage the signal strength characteristics along with body
movements to achieve authenticated key generation between each
wearable and a hub, but the proposed system suffers from low key
generation rate and ignores the possibility of on-body attackers.
DLINK [10] improves the bit rate five times higher than previous
research, which makes the key generation mechanism more robust
in various fading channel conditions. However, these cryptography-
based schemes still face the risk of key leakage, as well as replay
attacks, which can bypass the cryptographic protection using the
same legal management structure [6].
(3) Cross-layer Anomaly Detection: MedMon [15] is a wearable
anomaly detection framework that requires a security monitor
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Figure 1: (a) Motes placement: Hub: wrist (𝐻 ) ; Legitimate nodes:
right arm (𝐿1) , center abdomen (𝐿2) , and left ankle (𝐿3) ; Attackers:
fixed on surrounding furniture (𝐴1) (distance between test person
and (𝐴1) changing between 25cm to 400cm), attached on tester body
(𝐴2) . (b) RSSI signal behavior among different channels in BANs,
when human walking indoors.

acrossmultiple network layers. A large number of features extracted
from different receiving process are required including RSSI, time
of arrival, data payload, packet repeating rate, etc. For each feature,
an individual security policy with predefined threshold is used to
detect malicious behavior. PHY-IDS implements a learning-based
detection framework with single feature time series, which not only
avoids the cumbersome multi-layer monitoring architecture but
also simplifies the tedious threshold presetting process.
(4) Physical-layer Anomaly Detection: Detecting spoofing attacks
with RSSI in static wireless networks has been studied previously
[1, 3, 11], building on the observation that received signals reflect
the propagation environment or the wireless interface at the nodes
(i.e., fingerprinting). These approaches assume static environments
that are sensitive to movements since channel variation makes
the detection difficult. Huang et al. [5] devised a motion invariant
authentication system for wearable systems based on the idea of re-
moving the motion features at the cost of computationally complex
feature extractors, deep neural networks and intense RSSI sampling
process. Our system makes use of the channel variation due to
movement instead, and achieves the spoofing attack detection un-
der motion with a lightweight real-time intrusion detection system
and a much lower sampling rate.

3 PROBLEM DEFINITION
3.1 System Model
Our wearable system is a wireless network composed of 𝑁 on-body
nodes, including sensors, actuators, and one hub. In this paper, we
consider a star topology in which all nodes connect to the central
hub with one-hop bidirectional links. Depending on their function-
ality, nodes are attached to different body areas, for example, a
glucose sensor on the arm, a pacemaker in the chest, a plantar pres-
sure under the foot, and a fitness tracking band on the wrist. The
hub is a device such as a smartwatch, responsible for aggregating,
processing, and relaying data to remote data centers.

3.2 Security Goal
We focus on detecting spoofing attacks in BANs, that is, external
transmitters (attackers) impersonate legitimate nodes and try to
send false data or false critical commands to a node in the network.
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The objective of PHY-IDS is to differentiate between legitimate and
malicious packets based on the physical layer characteristics of
received wireless frames.

Our system provides real-time investigation for every single
incoming frame without any additional hardware. It is installed on
off-the-shelf wearable devices as plug-ins. The key idea of PHY-IDS
is to verify whether a received frame fits into the feature time series
of signals coming from a legitimate device. In this paper, we consider
both naive attackers and strong attackers, who are aware of the
detection system and intend to remain undetected and hide their
malicious frames bymanipulating their physical layer transmissions
to follow the expected behavior of the legitimate signals closely.
We will present the detailed attack model in Section 5.

3.3 RSSI Behavior of Wearable Devices
In BANs, the radio channel depends on plenty of parameters, such
as individual body shape, body movement, node placement, and
device hardware. Miniutti et al. [2] have reported that the chan-
nel behavior in BAN is scenario-dependent. Figure 1(b) shows the
RSSI time series we collected when a person walks indoors. The
channel dynamics differ notably depending on the placement of the
transmitter. With the receiver placed at the tester’s right wrist, the
variation of the signal coming from the center abdomen is higher
than that from the right arm. Non-line-of-sight channels, for exam-
ple, from the center back tend to vary more. On-body channels are
more stable than channels of off-body nodes. These differences in
individual channel dynamics and physical signal behaviors provide
the foundation to distinguish the transmitter of different signals.

4 SYSTEM DESIGN AND ALGORITHM
In this section, we describe the PHY-IDS framework to detect mali-
cious frames injected by spoofing attackers. Figure 2 is a system
overview, which contains four steps. PHY-IDS requires every node
collecting the RSSI of each received frame.

The first time deploying a device, the system runs step 1 in
an arbitrary environment under movements to collect training
time series. In this step, the hub broadcasts a steady stream of
probe packets to emulate the real traffic, and the node records
the RSSI time series. Then a learning algorithm in step 2 will
model the RSSI behavior of the legitimate wireless signal. The
complexity of learning algorithms is considered too expensive for
resource-constrained devices so that we execute them off-line in a
powerful device such as a hub. After the individual wearable device
downloads back its model, the real-time detection 4 runs locally
to ensure timely detection.

During the regular communication of the wearable devices, our
system monitors the RSSI metric for each incoming frame. Then,
based on the MAC address in the received frame header, the system
chooses the corresponding pattern to analyze each sample and
justify its legitimacy. Note that for bidirectional links, the RSSI has
the symmetric property[13]. Signals in two directions of the same
link share an identical RSSI pattern. Thereby, in step 3 , the model
can be loaded on both the hub and resource-constrained nodes.

Our system uses an autoregressive model as the time series
prediction model, which is trained with a historical RSSI trace. The
task of the model is to predict the upcoming value 𝑥𝑖 with the lagged

Figure 2: System overview of PHY-IDS

records in a size 𝑛 sliding window 𝑋𝑖−1 = {𝑥𝑖−1, 𝑥𝑖−2, ..., 𝑥𝑖−𝑛} as:
𝑥𝑖 = 𝑓 (𝑋𝑖−1) (1)

where 𝑓 (·) is a well-trained prediction model. Once the model is
sufficiently trained, in the detection process, the prediction error
can be calculated as the Euclidean distance between the predicted
and observed value as:

𝐸𝑟𝑟𝑜𝑟 = |𝑥𝑖 − 𝑥𝑖 | (2)
A high error tags a significant deviation from the expected behavior.
When the prediction model captures time-series accurately, the
system can detect anomalies that violate legitimate behavior with
simple thresholding algorithms.

4.1 Prediction Models
To identify a suitable model of RSSI time series forecasting, we com-
pare two models, namely autoregression (AR) and long short term
memory (LSTM). The former yields a linear model and the latter is
a recurrent neural network. Learning is the optimization process
to minimize the target error function w.r.t. model coefficients𝑊 in
the training dataset as below, where 𝑓 (·) is the model function and
𝑅 is the regularization term.

min
𝑊

∑
|𝑓 (𝑊,𝑋 ) − 𝑥𝑖 |2 + 𝑅 (3)

4.1.1 Autoregression. In time series analysis, a linear forecasting
model is modeled as below:

𝑓 (𝑊,𝑋𝑖−1) = 𝑤0 +𝑤1𝑥𝑖−1 + ... +𝑤𝑛𝑥𝑖−𝑛 (4)
where 𝑛 represents the 𝑛𝑡ℎ autoregression order that is equal to the
prediction window size, and𝑊 is the coefficient set {𝑤0,𝑤1, ...,𝑤𝑛}.
The linear regression assumes the data has the Markov property,
that is, the current sample only depends on the previous samples.
We add an L1 regularization term 𝛼 |𝑊 | in the model that estimates
the sparse coefficients. It has a feature reduction side effect that
efficiently reduces the computing complexity in the prediction stage.
To train the model, we use a coordinate descent solver that keeps
iterating until the target function converges.
4.1.2 Long Short Term Memory. It is one type of recurrent neural
network (RNN) applied to sequential data prediction. It is good
at non-linear modeling for long-range sequences. Different from
standard neural networks, RNN uses the hidden states to capture
the information about the computational results of the previous
time step. Our model is constructed by stacking one input layer,
one output layer, and two LSTM layers with the rectified linear unit
as an activation function. In our experiments, we train the model
with different hyper-parameters and evaluate their performance to
find a suitable setup for each dataset.
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Figure 3: (a) RSSI of malicious signal deviates from the expected be-
havior of legitimate signal. (b) Error distribution differs between
legitimate and adversary transmitters.

4.2 Anomaly Detection
In order to identify frames from malicious transmitters, the on-line
detection system computes the error in Equation 2 as the anomaly
score for every incoming frame. An alarm is triggered whenever
𝐸𝑟𝑟𝑜𝑟 > 𝜃 for threshold 𝜃 . Multiple anomaly detection algorithms
can be applied to this binary classification task except for the vanilla
method with a fixed threshold. However, it is worth pointing out
that finding the best-performing classification is not in the scope
of our paper. For this work, we optimize the 𝜃 choice with Equa-
tion5 and derive the best ideal accuracy of our system based on
the statistics of different attacks in our adversary model. Assume
the legitimate incoming signal has an error score of 𝐸𝑟𝑟𝑙 , and the
adversary signal is 𝐸𝑟𝑟𝑎 . Statistically speaking, 𝐸𝑟𝑟𝑙 and 𝐸𝑟𝑟𝑎 are
two random variables that follow different distribution as shown in
Figure 3 Different 𝜃 settings divide the density plot into four parts,
TP (true positive), FP (false positive), TN (true negative) and FN
(false negative).

max
𝜃

{𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦} = max
𝜃

{ 𝑇𝑃 +𝑇𝑁
𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 } (5)

5 ADVERSARY MODEL
We do not constrain the attacker’s location. However, we assume
that in most scenarios, there is a low probability that an adversary
is located next to legitimate nodes. We classify attacks into four
groups based on their knowledge of our system. We assume 𝐿 is
a legitimate node and 𝐴 is an attacker. After training, 𝑓𝐿 (·) is the
legitimate prediction model. In real-time detection, 𝐿 records the
RSSI series𝑋𝐿 for incoming frames as prediction model inputs. Due
to the open nature of the wireless medium, malicious attackers can
eavesdrop the on-going communications passively and record the
local RSSI as𝑋𝐴 . To fool the detection system, all attackers target to
forecast the legitimate RSSI trace accurately and fool our detection
system with a low error score.

(1) Naive Attacker : The first attack vector does not know any-
thing about our detection system. It transmits frames with
fixed transmit power without any efforts to evade our sys-
tem inspection. This is the most naive attacker we use as a
benchmark to show what is achievable with PHY-IDS.

(2) Model-stealing Attacker : The second attacker knows the well-
trained model 𝑓𝐿 (·) our system uses, but can not get access
to any legitimate nodes’ real-time RSSI. The attacking model
is 𝑥 = 𝑓𝐿 (𝑋𝐴).

(3) Training Data-stealing Attacker : The third attacker first ap-
pears early in initial training data collection. When legiti-
mate nodes are collecting training data, the attacker eaves-
drops the same frames and locally records the RSSI. After
that, it intercepts the legitimate RSSI trace and trains his own
prediction model 𝑓𝐴−𝐿 (·) mapping the relation between at-
tacker data and legitimate data. In the detection period, it is
only a passive eavesdropper and can not compromise any
nodes. Thereby, the attacking model is 𝑥 = 𝑓𝐴−𝐿 (𝑋𝐴).

(4) Mimic Training Attacker: The final attack vector deploys
an emulation attacking setup on another person to collect
pseudo training data for nodes 𝐿′ and 𝐴′, which is an imita-
tion of the previous attack. The attacking model is a pseudo
version of the previous attack 𝑥 = 𝑓𝐴′−𝐿′ (𝑋𝐴).

6 EVALUATION
In this section, we evaluate PHY-IDS on a prototypical setup. First
of all, we show that compared to a neural network, our AR model
performs better in RSSI prediction with a lower computational cost.
Afterward, we evaluate the ability of our system to detect different
attackers based on signal physical characteristics. In the end, we
analyze the system cost and compatibility, and also introduce a
parameter choosing guideline.

6.1 Experimental Setup
We set up a wearable prototype with six Firefly motes that feature
IEEE 802.15.4-compliant transceivers. The onboard transceiver is a
Texas Instruments CC2520 chip with a ceramic antenna. As shown
in Figure 1(a), three motes act as proxies for wearable devices worn
on different body areas (arm, abdomen and ankle), one as hub fixed
on the wrist and the other two as attackers (off-body and on-body).

We measure average RSSI during one packet reception as one
sample. In all experiments, the hub broadcasts packets every 5ms
with a fixed transmission power of 0 dBm, and the other motes
record the RSSI time series under user walking scenario. In our
configuration, to reach a high RSSI sampling rate, we use a packet
sending frequency of 200 Hz. In practice, the packets are sent at
a lower speed. In order to maintain the sampling rate, the system
can sample RSSI more than once during one packet transmission.

In the experiment, two volunteers participated, one male and
one female. For data collection, we asked them to wear the motes
and walk 10mins in their normal ways. We test our system in an
office corridor with regular furniture around. In this lively wireless
environment, the signals are interfered by nearby objects as well
as other signal sources such as WiFi and Bluetooth devices.

We implement PHY-IDS in Python using the Sciki-learn and
Keras library. For model evaluation, the train and test data is split as
70/30 for all our experiments. For a appropriate sliding window size
choice, each dataset calculates the autocorrelation and partial auto-
correlation function with lag range from [0 s, 30 s]. Based on the
most correlated lagged range, we go for a fair choice with 10 s for all
datasets. To amplify the behavior characteristics caused by dynamic
channels, we normalize data and range in value from 0 to 1 before
applying a prediction algorithm. It also can help optimizer speed up
the training process and reduce the chances of getting stuck in local
optimums. We train the prediction model individually for every
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dataset from different legitimate nodes. The hyper-parameters are
optimized for each model. To tune the parameters, the autoregres-
sion model implements a grid search with ten-fold cross-validation,
and the neural network uses manual search because of the ample
parameter space. To assess the impact of sampling rates on pre-
diction accuracy, we downsample all our data originally 200Hz
sampling rate to (100, 50, 20, 10, 8, 4, 2, 1Hz).

6.2 Model Suitability
We evaluate prediction model performance with normalized mean
absolute error (NMAE) defined as below, where 𝑥𝑖 is the actual RSSI
value at time 𝑖 , 𝑥𝑖 is the estimation value and 𝑛 is the size of test
set.

NMAE =

∑𝑛
𝑖=1 |𝑥𝑖 − 𝑥𝑖 |∑𝑛

𝑖=1 𝑥𝑖
(6)
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(b) Prediction error for volunteer #2 RSSI trace with different sampling rate (hz)
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Figure 4: Prediction performance of autoregression (AR) and long
short term memory (LSTM)

Figure 4 is the detailed prediction performance of two models
with different sampling rates. It covers six datasets collected from
two volunteers with three legitimate nodes each. Although the pre-
diction error changes as the sampling rates vary, both models hold
a good accuracy level. The best prediction error of 1% would imply
an average accuracy of 99%, which means both models can nicely
capture the mapping between history data in window 𝑋𝑖−1 and
the current time sample 𝑥𝑖 . In general, it is clear that autoregres-
sion performs slightly better than the neural network, especially
with low sampling rates. This may because the current time-series
correlation is dominated by linear relationships, which is not the
strength of recurrent neural networks. Alongside this, the sizeable
hyper-parameter space of the neural network might be another rea-
son. It challenges us to find the optimum network structure for each
dataset. In contrast, autoregression only has one hyper-parameter
𝛼 that is much easier to traverse entirely and figure out the best
model configuration.

Another observation is that the prediction error increases for
both models when resampling at lower rates. A higher resolution
provides more information within the tested range that helps mod-
els capture the dynamic channel details. However, the impact of the
sampling rate on prediction error is not linear. Figure 4 shows that
prediction errors have rapid changes in the low sampling range

below 20Hz. The Nyquist-Shannon sampling theorem can explain
this. When the sampling rate is higher than two times signal fre-
quency, perfect reconstruction is guaranteed possible. The human
body effective natural moving frequency is below 2Hz, so, in the-
ory, 4Hz should be the lowest boundary to capture the dynamic
channel behavior under walking. When the sampling rate is lower
than the theoretical bottom line as the left side of error lines, it is
difficult to track the signal behavior due to a lack of information.
One the other hand, the figure also shows that choosing a too high
sampling rate does not make a significant difference.

Besides that, our models have generalizability across different
node positions and testers. However, sensor placement indeed in-
fluences model performance. For sensor position at the arm, the
models have lower error rates. More likely, complex movement
in the channel between foot and hub introduces higher random
noise, which negatively affects prediction performance. We also
compare the experiments on two testers. Although an individual
has a unique gait pattern, the prediction error is at the same level on
the datasets from two testers. It indicates that our models can cap-
ture the characteristics of the dynamic channel under the walking
movement.

6.3 Detecting Spoofing Attacks
In this section, we show the ability of PHY-IDS to detect four levels
of spoofing attacks mentioned in Section 5. To do so, we simulate
the strong attacks using the data collected from real experiments.
In the following experiments, we use AR as the prediction model
with 10 Hz as the sampling rate. Based on the empirical error distri-
bution of the attacker, we optimize the threshold setting and infer
the theoretical detection accuracy based on the method shown in
Section 4.2.

Figure 5: The error performance of four attackers: naive attacker
(Naive); model-stealing attacker (Type_1); training data-stealing at-
tacker (Type_2); mimic training attacker (Type_3). The number on
top of each box is the accuracy of detecting spoofing attacks from
both on-body and off-bodymalicious devices in different scenarios.

Error statistics of each attacker are shown in Figure 5, and we
mark the individual detection accuracy on top of each box. As a
benchmark, our system can detect naive attackers with an accuracy
above 99.8%. This accuracy holds for all scenarios, which means
both on-body and off-body attacks have distinct physical channel
behavior from legitimate nodes. Similarly, the model-stealing attack
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is also easy to detect. Since a model is trained for a specific channel,
the well-trained model does not fit with the physical feature time
series of any other channels. Emulating the attacking setup on
another person helps the attacker to learn the legitimate channel
behavior, but entirely fooling our system is still impossible. The
detection accuracy of the mimic training attacker is approx 87.0%
on average. The training data-stealing attack is considered as the
strongest model, which has enough information to train a separate
algorithm mapping the relationship between the eavesdropped
RSSI and legitimate time series. However, it is still detectable by
our system with an accuracy around 81.0%. In general, due to the
open nature of the wireless medium, the attacker can receive the
same signal, which is not enough to estimate features of the signal
received by the victim receiver. Without access to the legitimate
RSSI time series, we consider that learning all signal behavior details
is unlikely even for adversaries with learning capability.

6.4 System Cost and Compatibility
We first compare the computational complexity of autoregression
and LSTM. For model training, AR has a overall complexity of
O(𝑛3 +𝑛2𝑡), where 𝑛 is the sliding window size and 𝑡 is the number
of training samples. For standard univariate LSTM with 𝐾 memory
cells, 𝑛 lagged time steps, 𝑡 training samples and 𝑚 epochs, the
computational complexity is O(4𝑚𝑡 (𝐾2 +𝐾𝑛 +𝐾)). When 𝐾 and𝑚
are large, training the LSTMmodel is muchmore expensive than AR.
For our design, model prediction complexity is another important
factor to assess system cost. To predict one sample, the AR model
has a complexity of O(𝑛 + 1). Compared to one single recurrent
layer in LSTM model, this is a very low computational level. In
practical scenarios, our system distributes the on-line detection
components to the wearable nodes. For these resource-constrained
devices, AR with low computational cost and higher prediction
accuracy is an appropriate choice.

We also notice that the model input dimension is a parameter
critical to the system operating cost. The model requires a high
sampling rate to capture the complete signal behavior, which im-
plies a larger window size 𝑛 as input. This not only increases the
calculation load but also challenges the resource consumption re-
lated to data collection, storage, and preprocessing. In a nutshell,
choosing the sampling rate is a two-fold question: it should not
be lower than the human body movement frequency but can not
be too high to affect other operating functions on the devices. The
specific choice should base on the actual deployment.

For PHY-IDS to detect spoofing attacks, a steady stream of legit-
imate data has to be transmitted. Streaming applications such as
real-time health monitoring and Bluetooth earphones are ideal for
our system to track received signal behavior. If the wearable device
only occasionally generates data, the burst of trafficwill result in the
first few frames not being well detected due to incomplete predic-
tion window filling. Hence, we also designed an backward detection
mode that uses frames coming after 𝑋𝑖+1 = {𝑥𝑖+1, 𝑥𝑖+2, ..., 𝑥𝑖+𝑛} to
verify the previous RSSI 𝑥𝑖 with our autoregressive model 𝑓 (𝑋𝑖+1),
triggered by the reception of 𝑥𝑖 . The NMAE difference between
the backward model and the normal forward model is less than
0.15%. This ensures that PHY-IDS can inspect every received frame
in different transmission modes and is compatible with deployed
applications.

7 CONCLUSION
In this work, we propose a novel real-time spoofing detection sys-
tem to augment wearable device security protection under body
motion. Our system leverages physical layer signal behavior to dis-
tinguish legitimate devices from malicious attackers. For different
levels of spoofing attacks with increasing knowledge of deployed
system, the experimental results demonstrate that PHY-IDS can
detect naive attacks with 99.8% average accuracy and still maintain
81.0% for the strongest attacker with full knowledge and advanced
learning capability. It is a promising step towards using wireless-
link characteristics for spoofing attack detection in BANs.
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