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ABSTRACT
Radiometric fingerprint schemes have been shown effective in iden-
tifying wireless devices based on imperfections in their hardware
electronics. The robustness of fingerprint systems under complex
channel conditions, however, is a critical challenge that makes their
application in real-world scenarios difficult. We systematically eval-
uate the wireless channel’s impact on radiometric fingerprints and
find that the channel impacts fingerprint features in a very particu-
lar way that depends on the channel’s properties. Based on these
insights, we present RRF, a system that provides a robust identifi-
cation/authentication service even under complex channel fading
disturbance. Our design deploys a hybrid architecture that combines
wireless channel simulation, signal processing and machine learn-
ing. In this pipeline, RRF first utilizes a series of structured channel
simulations to strategically improve system tolerance towards mul-
tipath channel interference. On top of that, in the identification
phase, RRF relies on noise compensation and a feature denoising
filter to augment the system’s stability in noisy conditions with
weak signals. Our experimental results show that RRF achieves an
average accuracy consistently above 99% in empirical scenarios
with complex channels, where the baseline approach from previous
work rarely exceeds 50%.
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Figure 1: Challenge: Both transmitter imperfections 𝑓 (𝑡 ) and the wireless channel
ℎ (𝑡 ) impact the signal (illustrated as constellation). Deviations from the ideal signal
𝑖 (𝑡 ) in the transmitted signal 𝑠 (𝑡 ) = 𝑖 (𝑡 ) ∗ 𝑓 (𝑡 ) are unique for each device, regarded
as the fingerprint. However, only the received signal 𝑠′ (𝑡 ) = 𝑠 (𝑡 ) ∗ℎ (𝑡 ) is observable.
As a consequence, channel perturbations challenge radiometric fingerprint system. In
this paper, we address the challenge with signal processing and classification optimization.

1 INTRODUCTION
Radiometric fingerprint schemes leverage analog and digital hard-
ware imperfections to distinguish radio frequency (RF) transmitters.
Transmitter imperfections manifest themselves in the radiated sig-
nal through deviation from the standardized ideal signal, which can
be used to identify individual devices. Radiometric fingerprints are
regarded as promising physical-layer identifications to augment or
replace cryptographic authentications, for the reason that bit-level
identification credentials are easy to replicate and commonly ex-
ploited by hackers [38]. The purely passive nature of this technique
requires no extra resources for end devices which fits well with
resource-constrained applications, e.g., wireless sensor networks.

Radiometric fingerprint systems are appealing but difficult in
practice. The characteristic properties of the received signal are a
compound of both the characteristic imperfections of the transmit-
ter and the transient impact of the wireless channel. Figure 1 illus-
trates the transmitter and wireless channel components that impact
the ideal signal. Imperfections of different transmitter components
are manifested in a characteristic radiated signal that, unfortunately,
is not directly received by the receiver. Instead the received sig-
nal is impacted by multipath, noise and Doppler effects from the
wireless channel. It is challenging to perfectly isolate transmitter
imperfections from the received signal, particularly when the im-
pact of the wireless channel dominates and hides the transmitter
imperfections. This problem is exacerbated with the number of
devices to be distinguished as the likelihood to have devices with
similar characteristic imperfections increases.

In realistic scenarios, wireless channel properties change due to
user movement and environment dynamics. Already small changes
in the environment can lead to considerable distortions in mag-
nitude, phase and even frequency of the received signal [10]. We
show with simple experiments in the beginning of this paper that
these distortions indeed challenge the accuracy of radiometric fin-
gerprint systems severely. Wenhao et al. investigate the real-world
constraints of radiometric fingerprint techniques with a theoretical
model and experiments [36] and come to similar conclusions.

Most existing fingerprint schemes emphasize the ability to dif-
ferentiate devices but omit the necessary design to enhance the ro-
bustness under diverse wireless channel conditions [2, 6, 25, 28, 34].
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A few systems have incorporated components to handle certain
impacts of the wireless channel [3, 40, 41], but do not systematically
analyse and address different channel impacts specifically. Besides,
channel estimation and equalization, applied to compensate the im-
pact of the wireless channel, cannot fully distinguish between trans-
mitter imperfections and the wireless channel either [12]. To avoid
this, we choose to embrace channel interference through classifier
optimization. Towards this end, RRF first uses carefully-selected
channel simulations to strategically improve classifier tolerance
towards channel interference.

This paper focuses on the robustness of radiometric fingerprint
system under diverse wireless channels. Our system design con-
siders pertinent strategies to deal with different channel impacts.
The key insight of this work is that the channel impacts fingerprint
features in a very particular way that depends on channel proper-
ties. We use this insight in the training phase and during feature
extraction to systematically adjust the decision boundaries of the
fingerprint classifier to improve its robustness against the wireless
channel. We demonstrate that already a simple machine learning
(ML) model, combined with an established feature representation
and modest signal processing, is sufficient to take the robustness
of radiometric fingerprint system to a new level. We call our ap-
proach RRF: a Robust Radiometric Fingerprint system and make
the following contributions:
(1) Fundamental insights: We use three properties of wireless chan-

nels, namely multipath, signal to noise ratio (SNR) and Doppler
effect, to systematically evaluate the wireless channel’s impact
on radiometric fingerprint features through controlled wireless
channel simulation and real-world experiments.

(2) System design: RRF is a system that embraces the wireless chan-
nel distortion to enhance fingerprint robustness. It is based on
a hybrid pipeline of wireless channel simulation, signal process-
ing and ML-based classification algorithm.

(3) Systematic evaluation: We demonstrate RRF’s performance in
a variety of everyday environments considering small-scale
fading that covers spatial variation, multipath, through-wall
and channel dynamics. Our experiments with 40 IEEE 802.15.4
compliant devices show that RRF provides a robust identifica-
tion/authentication service with an average accuracy consis-
tently above 99% while the baseline approach from previous
work [3] rarely exceeds 50% in challenging environments.

2 BACKGROUND AND MOTIVATION
In this section, we first give an overview of the common architecture
of radiometric fingerprint systems. Then we review the existing
fingerprint schemes and reiterate the research gaps. At the end, we
perform preliminary experiments to validate the wireless channel
challenges for the fingerprint system.

2.1 A Primer on Radiometric Fingerprint
Radiometric fingerprint systems aim to leverage the unique charac-
teristics of wireless signal transmitted by the devices as evidence to
verify their identities. The key enabler is that transmitter imperfec-
tions introduced by the manufacturing process are manifested in
the signal, which serve as unique identity [33]. This is a promising
approach to enhance the security of wireless networks. A typical

Figure 2: A typical fingerprint pipeline at the receiver. In feature space, different
shades of gray represent the fingerprint from different devices.

system architecture consists of multiple deployed wireless devices
and a dedicated fingerprint identifier/authenticator (gateway).

The system works as below: The transmitters encapsulate data
into the frame and generate RF signals for communication that
follow their specific physical-layer standard. After acquiring the
signals, the receiver refines the received signal’s physical-layer
characteristics as so-called features and forms fingerprints to differ-
entiate them. Figure 2 illustrates an example of such a pipeline. In
general, the core of fingerprint systems is a typical pattern classifi-
cation problem that is divided into training (enrollment) and testing
(identification) procedures. The first time a device joins the network,
the fingerprint of the device is collected at the receiver and enrolled
as a device profile linked with its ID. The profiles of all registered
devices are stored in a library that is used to train a supervised
classifier. In the identification procedure, the receiver extracts the
fingerprint for the incoming frame. Then the well-trained classifier
judges the corresponding identity. The state-of-the-art methods
to implement the classification functionality are data-driven ML
algorithms, such as support vector machines (SVMs) [3], k-nearest
neighbors (kNNs) [14], or neural network (NN) [29].

2.2 Security and Robustness
To measure the security level of a radiometric fingerprint system,
the accuracy to uniquely identify a target among a set of possible
candidates is used as evaluation standard [31]. In this paper, we use
true accept rate (TAR) and false accept rate (FAR) for this purpose:
TAR is the probability that a system correctly authenticates an
authorized device, and FAR is the probability of incorrectly authen-
ticating an unauthorized or malicious device. Security applications
have strict accuracy requirements. An empirical study about widely
deployed biometric fingerprint systems considers an average TAR
below 80% as poorly performing [37].

Another important aspect of a radiometric fingerprint system is
its robustness to maintain the same identification accuracy over
multiple measurements in different wireless environments. In real-
istic scenarios, wireless channel properties change unpredictably
over time due to user movement and environment dynamics. If
a fingerprint system is not robust, already slight changes in the
environment make the identification accuracy decline significantly.
This will be expressed in a decrease of the TAR and an increase of
the FAR. Authentic devices would suffer considerably as they are
likely to fail identification. Moreover, unauthorized devices may
be mistakenly treated as legitimate and gain access. Hence to be
practical and secure, a fingerprint system must be robust. This pa-
per focuses on enhancing the robustness of radiometric fingerprint
system.

2.3 Previous Attempts to Enhance Robustness
Previous work attempts to enhance robustness of radiometric fin-
gerprint systems along three lines of research: (1) more advanced



ML techniques, e.g., deep learning directly operating on raw data
samples [32], (2) better features, e.g., targeting the modulation er-
ror with a sliding window to compensate for random noise [3],
and (3) signal processing, e.g., similar to equalization, eliminating
channel impacts with function models [28, 40]. In other words,
the approaches cover the entire fingerprint pipeline, but do not
systematically analyse and address the channel impact specifically.

Brik et al. build on modulation-based features and take an in-
teresting approach by aggregating data to remove the variance of
the channel impact [3]. We will show that aggregation is effective
against statistical noise but not structural channel properties. Their
approach inspired us to have a closer look at the impact of the
channel on the modulation-based features. We also use this work
as the baseline in our evaluation.

2.4 Feature Definitions
As first, we introduce the fingerprint features we use in this paper.
It is not our goal to introduce a new radiometric fingerprint. Rather,
we focus on investigating the robustness of such a scheme against
wireless channel diversity. We implement the feature extraction
and classifier to model as closely as possible the approach described
in earlier work [3]. We introduce the definitions as following and
include more details in Appendix A.
2.4.1 Synchronization-based Features.
Carrier Frequency Offset (CFO).As for the imperfections of the lo-
cal oscillator (LO), the actual signal frequency between transmitters
might vary up to ±10𝑝𝑝𝑚 (i.e., up to ±24.5𝑘𝐻𝑧 for the 2.45𝐺𝐻𝑧 fre-
quency band)[16]. For successful demodulation, the receiver needs
to align its LO frequency with the transmitter as part of the carrier
synchronization process. CFO is a measure for the magnitude of
this alignment.
2.4.2 Constellation-related Features.
SFD Correlation (SFDC). After synchronization, the similarity
between observed I/Q values and the ideal symbol sequence is
another feature that is quantified with a correlation metric. To
calculate this feature, we use a field in the frame header that is
identical for all transmissions, such as the one-byte start of frame
delimiter (SFD). We define the feature as below:

SFDC =
1

𝑙𝑒𝑛 (𝑆𝐹𝐷)
∑︁

𝑘∈SFD
𝐼 [𝑘 ] · 𝑆 [𝑘 ] (1)

where 𝐼 [𝑘] is the ideal symbol and 𝑆 [𝑘] is the imperfect symbol at
timestamp 𝑘 .
Magnitude Error. This metric is defined as the absolute magnitude
difference between ideal symbol and detected symbol, which can
be estimated as:

𝑀𝑎𝑔𝐸𝑟𝑟𝑜𝑟 =
1
𝑁

𝑁∑︁
𝑘=1

| |𝑆 [𝑘 ] | − |𝐼 [𝑘 ] | | (2)

where 𝑁 is the number of symbols in the payload.
Phase Error. This metric is the absolute phase deviation between
ideal symbol and detected symbol, which can be estimated as below:

𝑃ℎ𝑎𝑠𝑒𝐸𝑟𝑟𝑜𝑟 =
1
𝑁

𝑁∑︁
𝑘=1

|∠𝑆 [𝑘 ] − ∠𝐼 [𝑘 ] | (3)

I/Q Offset. Some hardware imperfections such as I/Q imbalance
result in the asymmetric character of phase and magnitude errors,
so the center of the I/Q axes will deviate from the origin [24]. The
I/Q offset is used to quantify the deviation, which is written as:
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Figure 3: Fingerprinting accuracy when model is trained and tested on different datasets
collected in four setups. The method proposed in previous research is sensitive to minor
environmental dynamics such as rearranging the furniture or human mobility.

I/Q offset =
𝑁∑︁
𝑘=1

𝑆 [𝑘 ] (4)

2.5 Preliminary Experiments
With the following experiments we show that changes in an en-
vironment common in daily life impact the wireless channel suffi-
ciently to challenge the accuracy of radiometric fingerprint systems.
Scenarios.We present measurements from ten devices (transmit-
ters) in an indoor meeting roomwith four line-of-sight (LOS) setups
covering both location and environment variations: A static LOS
setup with receiver (USRP) 50𝑐𝑚 away from the transmitters, two
static setups for 6𝑚 separation with the same locations for the trans-
mitters and receiver but different furniture arrangements (moved
tables and marked as 6𝑚_1 and 6𝑚_2), and dynamic movement of
people in the vicinity of the receiver in the same 6𝑚_2 office LOS
environment. We collect 2000 fingerprint samples (one sample per
received frame) for each device and scenario.
Basic System Setup. In our implementation, we chose IEEE 802.15.4
as the simplest yet widely used I/Q-based modulation with a single
carrier and a long symbol duration to scale away unnecessary
aspects such as advanced mechanisms like channel equalization.
We use SVM as the classifier and choose the same sliding window
strategy to align with the configuration of previous work [3].
Evaluation Metrics. The TAR of a given device is the ratio of
identified labels consistent with the actual labels. We present the
results with two metrics. Average accuracy is defined as the average
TAR over the entire device set. Worst-case accuracy is the lowest
value among the TAR for any device, that captures the distribution
of misclassifications among a population. For multi-class classifi-
cation problem with unbalanced data, it is wildly used to evaluate
the classification performance with this definition [21].
Poor Robustness. We use the data collected to train four classifica-
tion models separately and test their performance. Figure 3 shows
the results. The high accuracy along the diagonal indicates the mod-
els trained based on each dataset can provide high accuracy when
we test on the data collected from the same setup. However, the ac-
curacy drops when we test in other setups. For example, the model
trained with 6𝑚_1 does not perform as well on the data collected
in 6𝑚_2 and vice versa. Even worse, it is difficult to guarantee the
identification quality for every single device. When testing in dif-
ferent environments, the worst-case accuracy is significantly lower
than 50% or even falls to 0%. We argue that the difference between
the three 6𝑚 environments is common in daily life and a robust
fingerprint system should be able to handle them. In Section 6 we
perform experiments with 40 devices in more challenging environ-
ments where the average accuracy of state-of-the-art approaches
barely reaches 50%.



(a) Measurements - fingerprint samples
extracted from measurements in four
scenarios, projected into 3D space.

(b) Illustration - fingerprints affected by
wireless channel.𝑆′1 are likely to be out-
side the decision boundary.

(c) Illustration - multipath and noise
move the fingerprints in distinct direc-
tions.

(d) Illustration - RRF compensates for
noise and strategically adjusts the deci-
sion boundaries.

Figure 4: The key insight of this paper is that the wireless channel impacts the modulation-based features in a very particular way. The approach of RRF is to compensate for
(measurable) noise and use simulation to include the multipath trajectory into the training set of the classifier. 𝑆1 and 𝑆2 indicate the collected fingerprint samples of two devices in
the enrollment environment. The decision boundary is trained with enrolled fingerprints.

Research gap. The inconsistency of classification accuracy in vari-
ous environments and locations clearly shows that wireless channel
diversity is a fundamental challenge that threatens the modulation-
related fingerprint system’s robustness. One thing to note is that
the model trained with a dynamic setup shows better robustness
in two of the scenarios (50𝑐𝑚 and 6𝑚_2) but not in the other. The
dynamic experiment investigates the time-varying channels which
might cover a series of similar wireless channels as those in other
setups, but there is no guarantee that it can cover all potential cases.
In a nutshell, we may use the fingerprints collected under a spe-
cific wireless channel condition to train a good classification model.
Unfortunately, relying on collecting fingerprints in all possible sce-
narios to train a robust model is impractical in many cases because
measuring fingerprints systematically covering a large variety of
wireless channels is labor-intensive and time-consuming.

3 INSIGHTS AND DESIGN PRINCIPLES
In this section, we present high-level insights about the key impact
of thewireless channel on the radiometric features. Thenwe provide
an overview of the design principles that guide RRF’s system design.

3.1 Channel Impact on the Feature Space
In this section, we use four representative setups to demonstrate
different impacts of the wireless channel: (i) an ideal environment
in the anechoic chamber, (ii) weak multipath and low noise envi-
ronment, two challenging setups including (iii) one static with a
complex multipath channel and high noise setup and (iv) another
dynamic setup with a continuously time-varying multipath chan-
nel. We randomly pick one device and look into the details of its
fingerprint features. Figure 4a shows fingerprint features of 200
frames from each of the four experiments. For the visualization
of the overall feature space, we use linear Principal Component
Analysis (PCA) for dimension compression. PCA linearly projects
the original data into the reduced space (3D) [18].

In Figure 4a, the channel’s impact on the measurements in two
challenging setups ((iii) and (iv)) mainly stems from multipath and
noise. The samples from the measurement with weak multipath
and low noise (ii) are close to the ideal samples (i). For challenging
measurements, themagnitude of the deviation from the ideal sample
risks to exceed the decision boundaries among different devices
and thus ruin the robustness of a fingerprint system as shown in
the schematic illustration Figure 4b. Our key insight is that the

channel impacts radiometric features not at random but in a very
distinct way. Through a simulation study presented in Section 4,
we identify that multipath and noise are two major impact factors
which deteriorate the system performance. They distort the samples
into different distinct directions in the feature space. The fact that
features capture different channel properties is not something new
in itself [41], but the different impacts of multipath and noise is. We
schematically illustrate the details in Figure 4c. In the feature space,
there is an extent of the orthogonality of the two channel properties’
impacts. The manner how they distort fingerprint features are
uncorrelated and additive. Therefore, we can use two independent
design principles to tackle multipath and noise in succession.
Multipath. The dynamic experiment (iv) investigates the contin-
uously time-varying channels. In the feature space, the measured
samples align in a trajectory as illustrated in Figure 4c. We hypoth-
esize that this is mainly due to multipath effects and verify it in
Section 4. Diverse multipath environments result in varying de-
grees of influence on the fingerprint. Inspired by this observation,
we propose our first system design principle and illustrate it in
Figure 4d: By systematically modeling the fingerprint feature distor-
tions with statistical wireless channel models, the system can optimize
the decision region of the classifier for each device and improve the
tolerance towards multipath channel distortion.
Signal to Noise Ratio.We make the second observation by com-
paring the experiment (ii) and (iii). The measured samples with
high noise setup are more spread out and diverge in an orthogonal
direction from the multipath trajectory as shown in Figure 4c. We
hypothesize this is due to the difference in SNR of the received
signals. When the SNR is low, higher random noise in the measured
signal leads to a high variance in features and the deterioration
of some features. As the SNR is easy to measure, based on this
phenomenon, we introduce our second design principle:With mea-
sured SNR as an indicator, RRF compensates the affected feature and
reduces the sample variance with a denoising filter.

3.2 RRF: Robust Radiometric Fingerprint
Ideally, a robust radiometric fingerprint system would compensate
for channel impacts to arrange the spread of samples in the feature
space as compact as possible compared to the distance to other
devices’ features. This is non-trivial to achieve because it would
require accurate channel estimation. As discussed previously and
illustrated in Figure 1, transmitter imperfections and the wireless



channel are indistinguishable for a receiver. An attempt to compen-
sate for the channel unavoidably involves a risk of compensating
the transmitter imperfection and thus the characteristic fingerprint.

Instead of optimizing the features, RRF takes a different approach
and looks for solutions from the perspective of the classifier. For
data-driven ML classifiers, the decision boundary highly depends
on the training data. Existing fingerprint classifiers trained with
enrolled profiles only learn fingerprint characteristics under the
enrollment channel condition and meet formidable challenges in
practical scenarios under complex and dynamic wireless conditions.

RRF combines the insights from Section 3.1 and strategically ad-
justs the decision boundaries among devices by including simulation-
based multipath samples into the training set during device enroll-
ment. This results in a much more robust alignment of the decision
boundaries among devices. Our approach is positively supported
by the fact that the trajectories of multipath samples relatively
align among all devices. Second, we compensate for noise during
the identification phase by projecting the feature samples onto the
narrow multipath trajectory. This is possible because first, the SNR
is easy to measure and second, there is a deterministic relation
between the amount of noise and the magnitude of the relevant
feature to be corrected (demonstrated in Section 5). As a result,
feature samples are likely to fall into the decision area independent
of channel conditions. In the following, Section 4 formalizes our
observations and Section 5 explains the design and implementation
details.

4 WIRELESS CHANNEL DISTORTIONS
This section systematically introduces insights into how the wire-
less channel distorts the radiometric fingerprint. The wireless chan-
nel is characterized by radio propagation properties that impact
the wireless signal. We consider multipath propagation, noise and
Doppler shift, as they are the most common propagation properties
in typical environments.

4.1 Methodology
To discuss the channel impact on fingerprint features, we use a
hybrid simulation to give a systematic overview of the insights. We
input the raw I/Q samples from ten devices measured in an ideal
environment (i.e., anechoic chamber) into Matlab simulations using
the Rician and Additive White Gaussian Noise (AWGN) channel
models [17, 19]. The multipath simulation parameters are reflecting
the two-ray channel used in the following analytical model:

ℎ (𝑡 ) = 𝜌0𝛿 (𝑡 ) + 𝜌1𝛿 (𝑡 − 𝜏) (5)

where the first ray arrives with amplitude 𝜌0 and the second ray ar-
rives 𝜏 seconds later with amplitude 𝜌1. With the help of automatic
gain control (AGC), the amplitudes of the two rays are normalized
by 𝜌 =

𝜌1
𝜌0
. The range of the parameters is chosen according to

the empirical indoor channel statistics by Saleh et al. [30]. Then
fingerprint features are extracted from the simulated I/Q samples
and constellation-related features (except SFDC) are averaged over
all symbols of a frame payload. We expect the results to give us
insights about fingerprint system robustness concerning the chan-
nel; the lower the variation of fingerprint features throughout the
parameter range, the more robust the fingerprint. This is the first
analysis of its kind that provides details of different channel aspects.

Figure 5: Multipath Gain: The side ray strength disturbs Magnitude Error and SFDC.
Channel parameters are [𝜌, 𝜏 ] = [−20 𝑑𝐵, ...,−10 𝑑𝐵, 0.1𝜇𝑠 ]. After normalization,
the close-to-zero value (e.g., carrier frequency offset (CFO) for device #1) means that
the corresponding feature of the device is the smallest among the tested devices.

Figure 6: Multipath Delay: The side ray delay has significant impacts on
Phase Error, Magnitude Error and SFDC. The channel parameters are [𝜌, 𝜏 ] =

[−20 𝑑𝐵, 0.1𝜇𝑠, ..., 0.5𝜇𝑠 ].

4.2 Channel Impacts
In the following we discuss the impact of multipath, signal to noise
ratio and Doppler on the radiometric features based on the hybrid
simulation. The interested reader finds an analytical model to intro-
duce insights into how the wireless channel distorts the radiometric
features in Appendix B.

4.2.1 Multipath. Figure 5 and Figure 6 show the (min-max) nor-
malized features from simulation results for two devices using the
Rician channel model with varying multipath gain 𝜌 and delay 𝜏 ,
respectively. Our first observation is that three features are more
stable than the others under multipath interference, i.e., the two
I/Q offset features and carrier frequency offset (CFO). The stability
of CFO indicates that the phase noise introduced by the multipath
channel does not impact carrier synchronization, at least not for the
range of parameters used. The other three features, magnitude error,
phase error and SFDC, are susceptible to channel disturbance. A
more severe multipath channel leads to a higher magnitude and/or
phase error as well as lower SFDC. The phase error is less sensitive
to the multipath gain than it is to the delay. The variance over the
samples is low in general, except for the SFDC feature. Compar-
ing the results between the two devices, we see a similar trend in
the feature changes. The level of the features differs significantly,
emphasizing that the channel impact on fingerprint features is a
combination of intrinsic imperfections and the residual channel
response.

4.2.2 Signal to Noise Ratio. To study the impact of noise, we
add noise (i.e., AWGN) to the measured I/Q samples to adjust their
SNR in a range of [5 𝑑𝐵, 40 𝑑𝐵]. Figure 7 (a) shows a similar picture
as the multipath case; many of the features are constant throughout
the SNR range. The big exception is the SFDC below 20 𝑑𝐵, and
some decrease in the frequency offset below 15 𝑑𝐵, as the low
SNR inevitably challenges the demodulation process and results in



Figure 7: Noise and Doppler: (a) The AWGN noise spreads out all features except CFO
and decreases SFDC. SNR of received frame varies from 5 𝑑𝐵 to 40 𝑑𝐵. (b) A large
Doppler frequency shift has an impact on Magnitude Error and CFO.

higher random noise left in the synchronized constellation. SFDC
is a metric that directly quantifies the difference between measured
samples and the ideal signal and is therefore more susceptible to
noise. Noise also increases the variance across the samples for all
constellation-based features.

4.2.3 Doppler. To investigate the impact of the moving trans-
mitter/receiver on the features, we specify the value of the Doppler
shift in the Rician fading channel for the dominant path and vary
it from 5 𝐻𝑧 to 320 𝐻𝑧. The Doppler spread challenges the res-
olution of the recovery algorithm in the coherent demodulator,
which naturally disturbs the CFO. As shown in Figure 7(b), a small
Doppler spread that cannot be fully resolved by the carrier recovery
algorithm mainly leads to a residual phase and magnitude noise
for synchronized symbols, which causes the small fluctuations of
susceptible features. For a significant Doppler shift, the receiver
will synchronize with the frequency involving the Doppler shift,
which directly causes a noticeable deviation of the CFO feature.
However, RRF’s system design does not consider Doppler as a ma-
jor impact factor. For common indoor deployment scenarios, the
object moving speed is uncommon to meet the level which leads to
fingerprint features deviate significantly. Even when the frequency
shift even reaches 80 𝐻𝑧 which corresponds to a speed of ≈ 9.8𝑚/𝑠
for 2.45 𝐺𝐻𝑧, most features are stable.

5 SYSTEM DESIGN
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Figure 8: RRF system architecture overview. Simulation-aided prior training strate-
gically adjusts the decision boundary to anticipate multipath samples, while noise
compensation projects the noise samples onto the multipath trajectory and thus into
the decision region.

The goal of RRF is to provide robust radiometric fingerprint
classification even under challenging channel conditions. RRF com-
bines the insights from the previous sections, namely that wireless
channels do not impact fingerprint features in a purely random
way, but rather result in distinct trajectories for multipath and
noise, respectively. As outlined in Section 3, the first approach in
RRF system design, namely simulation-based prior training, is to
support the classifier in adjusting the decision boundaries such
that they embrace multipath impacts. We implement this idea by
including simulation-based samples into the training set during

(a) The default classifier trained with only
enrolled fingerprint samples cannot gen-
eralize to samples measured in different
environments.

(b) RRF simulation-aided prior training
strategically stretches the classifier deci-
sion boundaries towards the direction of
simulated fingerprint samples.

Figure 9: Comparison of classification regions (represented as point clouds) with and
without prior training. For visualization in three dimensions, we use linear PCA as in
Section 3.

device enrollment. The other approach is the noise compensation
for scenarios with weak signals. We leverage the distinct relation
between the amount of (measurable) noise and the magnitude of
the SFDC feature to project the feature samples onto the narrow
multipath trajectory — or in other words, into the decision area of
the node in question. Figure 8 presents RRF’s design.

5.1 Simulation-aided Prior Training
The core idea of prior training is to utilize wireless channel knowl-
edge to simulate fingerprints under different multipath channel con-
ditions before practical testing. This is a type of data augmentation.
Simulating fingerprints under diverse wireless channel conditions
provide distinct advantages over experimenting on a physical setup.
A simulation takes less time with less overhead and allows for a
variety of configurations that is difficult to cover with practical
measurements. Our system generates a hybrid profile for each en-
rolled device in the prior training, including enrolled fingerprints
and simulated versions under different multipath channels, which
is used to train the classifier later.

This approach is positively supported by the fact that the trajec-
tories of the multipath samples are relatively narrow and aligned
among all devices.With the simulated fingerprints, the classifier can
generalize the fundamental hardware-related differences between
devices better, even in different environments. In the identifica-
tion phase, the classifier can implement the transferred knowledge
learned with simulation into the real world.
Multipath Simulation Channel Selection. The multipath param-
eters in Equation 5 are not arbitrary. In a realistic indoor wireless
environment, the channel parameters follow certain statistical dis-
tributions. Saleh et al. use radar-like pulses to measure an office
building multipath propagation and report the following statis-
tics [30]: the maximum delay spread 𝜏 is about 0.1𝜇𝑠 to 0.2𝜇𝑠 within
the same room and occasionally reaches 0.3𝜇𝑠 in the hallway. The
non-line-of-sight (NLOS) path signal attenuation varies over a 60𝑑𝐵
(corresponding to the relative gain 𝜌 in our model). Considering
the potential difference of building structure and material, we ex-
pand the delay range up to the half symbol duration time 0.5𝜇𝑠 1

to achieve a higher tolerance in complex multipath propagation
scenarios. With hybrid simulations, we find that weak rays (−20 𝑑𝐵
of the dominate path) only have a negligible impact on radiometric
features. Thus we only choose the gain 𝜌 between [−20 𝑑𝐵, 0 𝑑𝐵].

1IEEE 802.15.4 uses O-QPSK with half-symbol-period offset. [15]



(a) SFDC changes with SNR, raw data
without normalization.

(b) The relation between SFDCDelta with
SNR aligns among devices.

Figure 10: Four types devices SFDC feature changes with frame SNR, simulated with
AWGN channel.

Finally, the hybrid profiles are based on the enrolled finger-
prints and their 50 simulated versions covering the channel
setups with delay 𝜏 between [0.1𝜇𝑠, 0.5𝜇𝑠] with 𝜏 = 0.1𝜇𝑠 as in-
terval and relative gain 𝜌 between [−20 𝑑𝐵, 0 𝑑𝐵] with −2 𝑑𝐵 as
a step. The goal of selecting multipath parameters is not equal to
exhausting possible multipath channels shown in the physical de-
ployment environment. Rather, it aims to provide a guideline to
the data-driven classification algorithm based on the insights we
presented in Section 4. Therefore, we include extreme parameter
pairs less common in realistic scenarios, which ensures a much
more robust alignment of the decision boundaries among devices.
Decision Boundary Optimization. To demonstrate the benefit of
prior training, we first use the hybrid profiles of ten devices with
the aforementioned channel setups. Figure 9 compares the decision
zone of two classifiers trained with/without the simulated profiles
for one device and shows that the decision zone is optimized in the
direction of the multipath trajectory. When extending the hybrid
versions for more devices, Section 6 demonstrates that our designed
channel region can fit 40 additional devices well. With a series of
carefully selected multipath channel parameters mentioned above,
the simulated fingerprints diverge away from the enrolled finger-
prints to a limited extent. Moreover, as mentioned in Section 4,
for all devices, along with the increase of the multipath side-ray
strength, the directions of the extensions of the trajectories are
roughly aligned. Thus, in most cases, the simulated profiles are
in parallel with each other in different hyperplanes, rather than
opposed to each other in the same hyperplane. Hence, the proba-
bility that the hybrid profile of one device interferes with another
device’s profile is low.

5.2 Noise Compensation
As shown in Section 4, improving the fingerprint robustness at low
SNR is a two-fold challenge. Firstly, noise increases the variance
of all features. Second, when the SNR is low, the SFDC feature
decreases distinctly.
Denoising Filter. To enhance the system’s capability to handle
inputs with high variance, we have two possible options: either
augment the prior training with noisy fingerprints with low SNRs;
or using preprocessing methods to decrease the fingerprint feature
variance in preprocessing. In our case, adding noisy fingerprints is
not a wise choice as highly noisy inputs are undesirable for a stable
classifier and degrade performance [13]. In order to reserve more
space to tolerant multipath distortions, we apply a sliding window
filter on the extracted fingerprint features before passing them to
the classifier. Each received frame generates one fingerprint sample.
Then a filter averages all features of the fingerprint samples in the
window as one input data for the fingerprint classifier. We will
discuss suitable window sizes in Section 6.

SFDC Calibration. A low signal strength typically also implies
a significant deterioration of the SFDC feature value as shown in
Section 4. Eliminating this feature hurts the fingerprint system
accuracy and we demonstrate this in Section 6. To address the
SFDC feature deterioration problem, we propose a compensation
approach to calibrate the SFDC, which is based on the correlation
between SFDC and SNR. We first investigate it with AWGN simula-
tions for four different types of boards as shown in Figure 10a. We
observe that the impact of AWGN is consistent among the different
devices. When using the SFDC value at 40 𝑑𝐵 SNR as reference
and calculating the SFDC difference Δ for each SNR level, we get
the results shown in Figure 10b. The trends of the different boards
overlap with each other. Therefore, we propose a compensation
approach to calibrate the SFDC according to the received frame’s
SNR. RRF uses a simple discrete mapping table, but it also can be
implemented with a continuous function of Δ(𝑠𝑛𝑟 ).

6 EVALUATION
In this section, we first present the performance of the basic system
configuration for benchmark fingerprints collected in the anechoic
chamber. We then evaluate our system to demonstrate RRF’s perfor-
mance in a range of diverse channel setups with both simulations
and experiments in a series of indoor environments.
Fingerprint System Implementation. For data acquisition, we
use a USRP B210 as the receiver to capture signals in the I/Q format
with a sampling rate of 16𝑀𝐻𝑧 and 50 𝑑𝐵 fixed gain. The finger-
print pipeline has two parts: the feature extractor is implemented in
Matlab using the Communication toolbox, and the fingerprint clas-
sifier is written in Python using the Sciki-learn [4] and Keras [5]
libraries. Matlab is also used to simulate wireless channels for prior
training and evaluation.
Devices. In our evaluation, we fingerprint four types of off-the-
shelf sensor boards as shown in Appendix C, in total 4 × 10 motes
including ten TelosB boards with Texas Instruments CC2420 radio
chips and integrated PCB antennas, ten Zolertia Firefly boards with
Texas Instruments CC2538 system on chips (SoCs) and ceramic
antennas, ten nRF52840 dks and ten nRF52840 dongles with Nordic
Semiconductor multi-protocol SoCs and PCB antennas. All motes
transmit frames at 2.48 𝐺𝐻𝑧 following the IEEE 802.15.4 protocol
with 2𝑀𝐻𝑧 bandwidth.
Evaluation Metrics. We use both the average accuracy and worst-
case accuracy metrics introduced in Section 2. Besides, in order to
differentiate between false positives and false negatives, we use
average FAR which is the average FAR over the entire device set.

In the following, we evaluate RRF’s performance by comparing
different system configurations in different test scenarios. We use
the following abbreviation to refer to different system components:

Table 1: System configuration abbreviation.

Component
Radiometric
Fingerprints

Simulation-aided
Prior Training

Sliding Window
Denoising Filter

SFDC
Calibration

Abbr. M P W N

6.1 Benchmark Experiments
Experimental Setup.We conduct benchmark experiments in an
anechoic chamber (ideal channel) to avoid any impact of the wire-
less channel. We fix the USRP on one side of a wooden holder and



place the sensor motes 50 𝑐𝑚 away, ensuring the receiver is out of
the near field region. The frame transmission rate is 200 𝑓 𝑟𝑎𝑚𝑒𝑠/𝑠
with 90 𝐵 random payload, and we collect I/Q samples for 10𝑠 per
device. In our implementation, fingerprint samples are frame-based.
For the following evaluation, we refer to the fingerprint samples
extracted from the benchmark I/Q data as enrolled profiles.
Classifier Selection. Our method is not designed with a target clas-
sification algorithm in mind. To select a classifier and build a solid
preparation for the following evaluation, we compare four clas-
sifiers with different properties that are commonly used, namely
SVM, random forest (RFC), kNN and NN. For practical reasons,
before applying the classifier, we rescale the fingerprint features
with a min-max normalizer into the interval [0, 1]. The normalized
parameters extracted with the samples are used in the following
experiments. We use a basic configuration with the radiometric
fingerprint only (𝑀) and exclude other components of our system
design for the algorithm selection purpose.We evaluate everymodel
with 10-fold cross-validation that reduces random performance ar-
tifacts by evaluating performance over ten non-overlapping subsets
of the dataset.

The results in Table 2 show that all classifiers reach an average
accuracy of at least 98.11%. The SVM and RFC algorithms slightly
outperform the other two classifiers. The selection of the algorithm
depends highly on the data provided and system design require-
ments such as the resource budgets for storage, computation, train-
ing, and running time. For our system evaluation, we use an SVM
based on its advantages in terms of limited hyper-parameters, short
training time and low memory storage requirements. In addition,
we tested SVM with varying-size training datasets. The results
showed that SVM reaches an accuracy above 94.8% with only five
samples per device, 98.75% for 25 samples and 99.58% with 50 sam-
ples. For the following evaluation, we choose the SVM algorithm
with 50 samples per device as classifier setup.

Table 2: Classification accuracy of four classification algorithms with 10-fold cross-
validation. Accuracy% (accuracy variance among 10 fold tests%): SVM with rbf kernel
and one-over-rest strategy, RFC with 100 subtrees, kNN with 5 neighbors and 2-layer
NN composed of a single hidden layer with 512 rectified linear units (ReLu) neurons
and an L2 regularizer.

Classifiers SVM RFC kNN NN

Accuracy 99.98% (0.02%) 99.99% (0.01%) 98.84% (0.11%) 98.11% (0.58%)

6.2 Simulation Evaluation
In this section, we evaluate the two RRF design approaches, simulation-
aided prior training (𝑃 ) and noise compensation (𝑁 ), using con-
trolled channel simulations. We measure the device identification
robustness in terms of average accuracy and the average FAR.
Different Multipath Channels. As introduced in Section 5, prior
training adds simulated fingerprint samples (generated based on
benchmark I/Q data) to the training set of the classifier to anticipate
fingerprints affected by multipath. To evaluate this approach, we
generate a test set of fingerprint samples (500 per device), with ran-
domly picked channel parameters. The channel parameters follow
a uniform distribution over the continuous range 𝜏 = [0.1𝜇𝑠, 0.5𝜇𝑠]
and 𝜌 = [−20 𝑑𝐵, 0 𝑑𝐵]. Compared with the set used for hybrid
profile, the channel setup for the test set is wider and includes both
seen and unseen multipath channels for the fingerprint classifier.

M M+P
Configuration

Average%

Accuracy

WC%

Accuracy

FAR %

7.03 98.56
0.00 78.50
3.25 0.04

(a)Multipath test
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Figure 11: The simulation test sets: (a) multipath, channel parameters follow 𝜌 ∼
𝑈 (−20, 0)𝑑𝐵 and𝜏 ∼ 𝑈 (0.1, 0.5)𝜇𝑠 , (b) SNR test set, the SNR of frame follows𝑆𝑁𝑅 ∼
𝑈 (5, 40)𝑑𝐵. The prior training supports system overcome multipath distortions. The
noise compensation eliminates the impacts of AWGN.
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Figure 12: SNR test - classification accuracy comparison for two system configurations:
reference (𝑀 +𝑊 ) and RRF (𝑀 + 𝑃 +𝑊 + 𝑁 ) with two window sizes for different
frame SNR conditions varying from 1 𝑑𝐵 to 40 𝑑𝐵.

Figure 11a compares the robustness of the basic configuration
(𝑀) which trains the classifier with enrolled profiles only, and
the configuration using prior training (𝑀 + 𝑃). The results clearly
show the devastating impact of the multipath channel without prior
training, and this is in a parameter range well in line with empir-
ical channel measurements [30]. In contrast, prior training leads
to significant improvements, and the system reaches an average
accuracy of 98%. The classifier trained with hybrid profiles indeed
can arrange the decision boundaries to anticipate the multipath
samples and avoid overfitting with enrolled profiles.

In addition, we evaluate the configuration with only relatively
stable features (𝑀 ′) (CFO, I/Q offsets). The results (not in the figure)
show a poor performance with worst-case accuracy 0.06% for 40
devices. This indicates that the fingerprint with few features hurts
the classification accuracy of the system.
Diverse SNR Conditions. In this section, we evaluate the perfor-
mance of noise compensation and complete RRF under different
SNR conditions. The first test set aims to provide an overview of RRF
in diverse SNR conditions. We generate the test set by adding Gauss-
ian noise to the benchmark I/Q samples, which includes fingerprint
samples extracted from frames with different SNR conditions ran-
domly picked from 5 𝑑𝐵 to 40 𝑑𝐵. The system performance is shown
in Figure 11b. Comparing the baseline system (𝑀 +𝑊 4, averag-
ing over 4 samples as in [3]), the system configuration with prior
training (𝑀 + 𝑃 ) improves the average accuracy by 18% with only a
single sample. Our complete RRF system design (𝑀 + 𝑃 +𝑊 4 + 𝑁 )
can optimize the average accuracy further and reaches an average
accuracy of 99%.

Besides, we also evaluate the configuration without the SFDC
feature (𝑀 ′′ + 𝑃 +𝑊 4) to demonstrate that this feature should not
be ignored. In the results (not in the figure), the poor worst-case
accuracy (0.08%) is mainly due to a misclassification between two
devices of the same model, which implies that the SFDC feature
brings valuable information to differentiate similar devices.

Next, we demonstrate the system performance in different SNR
conditions from 1 𝑑𝐵 to 40 𝑑𝐵 in detail. This test set investigates
the lowest SNR bound of RRF and the SNR operating region of
the noise compensation design. For each SNR level we generate
one test set, evaluate the classification performance and plot them
in Figure 12. The results show that the sliding window denoising



filter improves system performance with increasing SNR and larger
window size. In the case of AWGN, a larger window can reduce
the features’ variance or spread further. However, the baseline
configurations alone (𝑀 +𝑊 4 and𝑀 +𝑊 20) are not sufficient to
reach an acceptable performance below 20 𝑑𝐵, most likely because
the filtered features still reach beyond the decision boundaries. RRF
significantly outperforms the reference configuration in this range,
where even the worst-case accuracy of our approach is strictly
superior to the average accuracy of the reference configurations.
RRF’s classification performance deteriorates below 5 𝑑𝐵. However,
this is at a level of SNR when even communication is challenging
and most packets cannot be received anymore in IEEE 802.15.4 [11].
We consider 5 𝑑𝐵 as the lower bound for RRF’s ability to operate
reliably. We also conclude that noise compensation is not needed
beyond 20 𝑑𝐵 where even the worst-case accuracy reaches 100%.
We confirm this finding with experimental results in next section.

In addition, compared to the configuration 𝑀 + 𝑃 +𝑊 4 + 𝑁 , a
larger window size configuration (𝑀 + 𝑃 +𝑊 20 + 𝑁 ) improves the
worst-case accuracy to 99% for SNR around 5𝑑𝐵. A large window
size gives higher accuracy but requires more samples and therefore
implies a longer response time. Therefore, considering a practical
implementation with reasonable response time, RRF chooses 20 as
a window size in following evaluation (in our setup, it takes 0.1𝑠 to
receive 20 frames).

6.3 Real World Experiments
In this section, we evaluate RRF in four different indoor environ-
ments with both LOS and NLOS setups with data collected over six
months. We mainly consider three environmental factors: spatial
variation, through-wall scenarios and channel dynamics. All sys-
tem configurations are trained with 4 × 10 devices, but we focus
the testing on ten Firefly motes of the same model as we believe
that identifying devices made of the same components at the same
facility is the most challenging scenario. We run a total of 13 exper-
iments and each experiment collects 30000 fingerprint samples. We
compare three configurations: radiometric fingerprint with a sliding
window (𝑀 +𝑊 ) representing state-of-the-art as a baseline, radio-
metric fingerprint with prior training (𝑀 + 𝑃 ), and (𝑀 + 𝑃 +𝑊 +𝑁 )
with prior training and noise compensation.
Preliminary Experiment Scenario. In the first experiment, we
test RRF’s performance with the same LOS setup as preliminary
experiments presented in Section 2. The meeting room is equipped
with standard office equipment such as chairs, tables, book shelves
and blackboards. With LOS paths the signal maintains as strong
as around 20 𝑑𝐵 for different 6𝑚 setups. Among evaluated envi-
ronments this is the least challenging, since the measurements are
impacted by less multipath and have a strong SNR.

We present the results in Figure 13. In consistent with the pre-
liminary results introduced in Section 2, the baseline configuration
shows poor performance. The prior training (𝑀+𝑃 ) alone addresses
the major multipath interference and maintains the average accu-
racy above 99% (95% worst-case accuracy) for all scenarios. The
complete RRF system design provides themost reliable performance
and consistently achieves a worst-case accuracy over 99%.
Rich Multipath Scenario.We conduct the second experiment in
an aisle with many metal tubes suspended from the ceiling along
the wall, which leads to complex multipath effects. We test two
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Figure 13: Indoor meeting room scenario - for the LOS setup, the baseline system𝑀 +
𝑊 can not reach sound performance, but RRF demonstrated significant improvements
over all scenarios.
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Figure 14: Rich multipath - high SNR - fingerprint performance comparison in an
underground aisle with LOS setup. RRF identifies devices with 100% accuracy.
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Figure 15: Corridor scenario - fingerprint performance comparison in office corridor
environment with a series of systematic NLOS setups. RRF maintains an accuracy
above 99% even for the dynamic setup with a moving receiver.

scenarios: a static setup with transmitters at different distances up
to 20𝑚 away from the receiver, and wearable experiments where a
volunteer holds the tested device waving her hand. The scenario in
the aisle is to mimic a factory where multiple reflections are caused
by surrounding metal equipment. The measurements show that the
signal strength is strong in this environment, e.g., at 20𝑚 the SNR
is around 17 𝑑𝐵.

The results in Figure 14 demonstrate similar results as in the first
experiment. The baseline configuration (𝑀 +𝑊 ) has consistently
low accuracy, while prior training alone (𝑀 + 𝑃 ) explicitly address-
ing multipath reaches average an accuracy of 97% and above (92%
worst-case accuracy) for all scenarios. It is interesting to note that
an increasing distance does not automatically translate into worse
performance in multipath environments, as the gain of the reflec-
tions is much higher at lower distances. Adding noise compensation
(M+P+W+N) additionally improves performance and consistently
leads to 100% accuracy in this environment.
Corridor Scenario. In this experiment, we investigate the ability of
RRF to identify devices in an office environment with NLOS setups
with the signal passing through multiple walls. This setup features
complex multipath fading due to signal reflections on walls, glass,
standard office furniture and equipment. The walls between the
rooms are about 16𝑐𝑚 thick and consist of insulated gypsum, so
signal attenuation is significant when passing through the walls.
The tested devices are fixed in one office room with the door closed.
We systematically put the receiver at different locations with the
distance to the test device ranging from 1𝑚 to 20𝑚. Besides the
static scenario, we also create a mobile scenario with higher moving
speed than the wearable setup in the previous experiment, in which
we put the receiver on a trolley and move it at a speed of about
2𝑚/𝑠 back and forth in the corridor.



Figure 15 shows the results for this environment. The figure
shows that prior training (𝑀 +𝑃 ) is very effective at short distances
(1𝑚 and 10𝑚) and in the high-speed wearable scenario, and signif-
icantly improves the average accuracy. However, the worst-case
accuracy is still low for 10𝑚 and prior training can hardly embrace
the channel at 20𝑚 (the average SNR for 10𝑚 is around 13 𝑑𝐵 and
for 6 𝑑𝐵 for 20𝑚). On the other hand, the complete RRF configura-
tion including noise compensation (𝑀 + 𝑃 +𝑊 + 𝑁 ) maintains a
high average classification accuracy and worst-case accuracy above
94.9% even at 20𝑚. This indicates that the SNR is the limiting factor
for longer distances in this environment.
Summary. The wireless channel in our real-world experiments
severely challenges fingerprint robustness. RRF achieves a consis-
tently good performance with both average and worst-case accu-
racy above 99%.

7 SECURITY ANALYSIS AND LIMITATION
In this section, we discuss security aspects of RRF. We are specifi-
cally interested if the prior training with hybrid profiles exposes
new attack opportunities. We consider an adversary that can im-
personate users’ bit-level identification credentials but not their
radiometric fingerprints. Advanced clone attacks that allow the
adversary to access the low-level circuit and manipulate its finger-
print would require extra defense strategies [1, 7] that are out of
scope for this paper.

In the following analysis, we mainly relate to our implementa-
tion with min-max normalization preprocessing and SVM as the
classifier. We define a normalization zone based on the minimum
and maximum values of each feature across all enrolled devices’s
hybrid profiles. An enrolled device impersonating bit-level creden-
tials would be revealed by RRF because of its accurate identification
ability. If this attack came from an unenrolled device, the current
implementation would classify the attacker as one of the enrolled
devices unless the fingerprint falls outside the normalization zone.
This is due to that SVM partitions the feature space into decision
zones based on extreme points. Thereby the features with mild to
moderate variations can be generously classified as the same class.
RRF simulated-aided prior training optimizes SVM partitioning in
a way that the size of each individual zone might expand/shrink,
but the total normalization zone does not expand. For this reason,
RRF does not make the SVM classifier more permissive in favour
of the attacker.

To improve the protection against attacks initiated by an un-
enrolled device further, we propose a distance-based sanity check
strategy to make the approach less permissive. We define a zone for
each device by the ranges between the minimum and maximum val-
ues of each feature in its hybrid profiles. If the incoming fingerprint
is not in the zone, it will be identified as an unenrolled device. Sam-
pling of the SVM feature space reveals that these zones are small
compared to the decision zones, below 2% for 40 enrolled devices.
Adding a sanity check together with RRF thereby would decrease
the attacker’s success probability by 98% for every attempt.

In general, the RRF system design is independent of the clas-
sifier choice. The implementations with different classifiers have
distinct security concerns. We leave the performance and security
analysis of other classifiers for future work. RRF aims to enhance

the robustness of radiometric fingerprint system, which ensures
the system can identify legitimate users accurately over multiple
measurements in different wireless environments.

8 RELATEDWORK
Transient-based Radiometric Fingerprint. These fingerprints
are built on unique features extracted from the signal’s transient
phase to identify individual devices [6, 34, 35]. Boris et al. show that
transient phases are sensitive to antenna polarization and device
locations [6], and require expensive receivers with high sampling
rates (1-2 GS/s). Hence, they are unsuitable for civilian usage.
Coarse-extracted Radiometric Fingerprint. These systems use
unprocessed I/Q time series as high-dimensional fingerprints and
leverage deep learning algorithms to automate the feature extrac-
tion process [32]. Amani et al. confirm that this category of sys-
tems suffers significant interference from wireless channels [2].
To enhance the robustness, ORACLE modifies the modulation pro-
cessing chain of transmitters by introducing additional artificial
imperfections to enlarge the difference between devices. However,
this method requires access to the modulation processing pipeline,
which is not practical for cheap off-the-shelf devices. In compari-
son, RRF focuses on the receiver classifier and inherently does not
require any transmitter modifications.
Fine-extracted Radiometric Fingerprint. Fine-extracted finger-
prints are more structured, extracted via well-defined signal pro-
cessing procedures. The feature extractor can be easily integrated
with the receiver demodulation processing chain. These features
include AGC-based features [22], channel state information (CSI)-
based features [23], and modulation based features [3, 8, 20, 26, 27].
To enhance the fingerprint system’s robustness towards channel
fading interference, some features are not optional. For example,
AGC-based features are highly dependent on the received signal
strength that is susceptible to location changes. CSI-based features
are limited to protocols supporting channel estimation, such as
WiFi [23]. Most works usually assess only the classification accu-
racy and fail to capture the robustness aspect. Few works specifi-
cally augment the robustness of the system towards environment
conditions. Xinyu et al. devise a hybrid classifier by adjusting fea-
ture weights based on the received signal SNR level [39, 41]. Their
solution emphasizes the robustness towards SNR but does not does
not consider other factors such as multipath and device mobility.

9 CONCLUSIONS
We propose RRF, a robust radiometric fingerprint system that ad-
dresses the fundamental challenge of wireless channel distortions.
We demonstrate through experiments that already small changes
in the environment can lead to a significant reduction in the proba-
bility that a system correctly authenticates an authorized device.
We are the first to analyze the impact of the wireless channel on
fingerprints through simulation, real-world experiments and analyt-
ical modeling. The systematic insights allow us to design a hybrid
pipeline that embraces the distortions caused by the wireless chan-
nel and enhances the system’s robustness. Our evaluation shows
that RRF can achieve a high accuracy in a variety of challenging
everyday environments, and demonstrates significantly enhanced
robustness compared to previous work.
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A FINGERPRINT FEATURE MODELING
We consider the complex signal 𝑟 (𝑡) = 𝑢 (𝑡)𝑒 𝑗2𝜋 𝑓 𝑡 where the base-
band signal 𝑢 (𝑡) encodes data in magnitude and phase, and 𝑓 is
the frequency at which the signal is transmitted. This signal can be
represented in the constellation diagram with two orthogonal sub-
carriers, called in-phase (I) and quadrature (Q) components [42], in
the form of vectors (phasors). A modulation of order 𝑀 can thus
be represented by a set of ideal symbols 𝐼 = {𝐴𝑖𝑒

𝑗Φ𝑖 }, 𝑖 = 1..𝑀 ,
where 𝐴𝑖𝑒

𝑗Φ𝑖 is the phasor of symbol 𝑖 with magnitude 𝐴𝑖 and
phase Φ𝑖 . For instance, the QPSK modulation used in IEEE 802.15.4
has modulation order𝑀 = 4 and encodes information only in the
phase with the symbols 𝐼 = {𝑒 𝑗𝜋/4, 𝑒 𝑗3𝜋/4, 𝑒 𝑗5𝜋/4, 𝑒 𝑗7𝜋/4}.

The transmitters’ hardware brings in different imperfections in
both magnitude and phase, as shown for one symbol in Figure 16.
The introduced error 𝑎𝑒 𝑗𝜙 is called symbol error with magnitude 𝑎
and phase 𝜙 . Thereby, the imperfect symbols actually transmitted
are the set 𝑆 = {𝐴𝑖𝑒

𝑗Φ𝑖 + 𝑎𝑖𝑒
𝑗𝜙𝑖 }, 𝑖 = 1..𝑀 . The radiometric finger-

print features mainly reflect the statistical characteristics of the
symbol errors by comparing 𝑆 and 𝐼 .

We can classify fingerprint features into two categories based on
two modes of the coherent demodulator. The first mode is the ini-
tial acquisition mode, where synchronization-based fingerprint
features are extracted. When a frame arrives at the receiver, various
signal parameters are measured to support AGC and synchroniza-
tion processes. After that, the demodulator switches to the decision-
direct mode. In this stage, the demodulator achieves synchroniza-
tion, and the locked constellation is the source of constellation-
based features. For each frame, the preamble is used for synchro-
nization in the initial acquisition mode, and after synchronization,
payload symbols are used to extract constellation-based features.

https://github.com/fchollet/keras
https://doi.org/10.1109/IEEESTD.2006.232110


The constellation-based features refer to the modulation-base fea-
ture set introduced by Brik et al. [3].

Synchronization-based Features.
Carrier Frequency Offset (CFO). As for the imperfections of the
local oscillator (LO), the actual signal frequency between transmit-
ters might vary up to ±10𝑝𝑝𝑚 (i.e., up to ±24.5𝑘𝐻𝑧 for the 2.45𝐺𝐻𝑧
frequency band)[16].

Constellation-related Features.
SFD Correlation (SFDC).We define the feature as below:

SFDC =
1

𝑙𝑒𝑛 (𝑆𝐹𝐷)
∑︁

𝑘∈SFD
𝐼𝑘 · 𝑆𝑘 (6)

Magnitude Error. This metric is defined as the absolute magnitude
difference between ideal symbol and detected symbol phasor, which
can be estimated as:

𝑀𝑎𝑔𝐸𝑟𝑟𝑜𝑟 =
1
𝑀

𝑀∑︁
𝑖=1

| |𝑆𝑖 | − |𝐼𝑖 | | =
1
𝑀

𝑀∑︁
𝑖=1

| |𝐴𝑖𝑒
𝑗Φ𝑖 + 𝑎𝑖𝑒

𝑗𝜙𝑖 | −𝐴𝑖 | (7)

Phase Error. This metric is the absolute phase deviation between
ideal symbol and detected symbol phasor, which can be estimated
as below:

𝑃ℎ𝑎𝑠𝑒𝐸𝑟𝑟𝑜𝑟 =
1
𝑀

𝑀∑︁
𝑖=1

|∠𝑆𝑖 − ∠𝐼𝑖 | =
1
𝑀

𝑀∑︁
𝑖=1

|∠ (𝐴𝑖𝑒
𝑗Φ𝑖 +𝑎𝑖𝑒 𝑗𝜙𝑖 ) −Φ𝑖 | (8)

I/Q Offset. The I/Q offset is used to quantify the deviation between
the center of the ideal signal I/Q axes and real signal, which is
written as:

I/Q offset =
𝑀∑︁
𝑖=1

𝑆𝑖 =

𝑀∑︁
𝑖=1

(𝐴𝑖𝑒
𝑗Φ𝑖 + 𝑎𝑖𝑒

𝑗𝜙𝑖 )

I offset = 𝑟𝑒𝑎𝑙 (I/Q offset) ; Q offset = 𝑖𝑚𝑎𝑔 (I/Q offset)
(9)

Q

I

𝐼

𝐴𝑒 𝑗Φ

𝑆
𝑎𝑒 𝑗𝜙

𝑆 ′

𝑎′𝑒 𝑗𝜙
′

𝜃 ′
𝑥 ′

Figure 16: A close look into the modulation constellation: The ideal symbol 𝐼 is trans-
formed by an error vector 𝑎𝑒 𝑗𝜙 into the observed symbols 𝑆 (fingerprint) respective
𝑆′ (hardware imperfection plus channel impacts). The resulting modulation error is
estimated from the received samples as magnitude error 𝑥 ′, phase error 𝜃 ′ and I/Q
offsets.

The aforementioned feature definitions are based on the imper-
fect symbols 𝑆 actually transmitted. The received signal is a linear
combination of the transmitted signal and the channel response. We
express the received symbol set as 𝑆 ′ = {𝐴𝑖𝑒

𝑗Φ𝑖 + 𝑎′
𝑖
𝑒 𝑗𝜙

′
𝑖 }, 𝑖 = 1..𝑀 ,

where 𝑎′
𝑖
is the magnitude and 𝜙 ′

𝑖
the phase of the resulting sym-

bol error (c.f., Figure 16). Concrete expressions of 𝑆 ′ for different
channel models are established in the next section. To calculate the
constellation-related features for the received signal, 𝑎′

𝑖
and 𝜙 ′

𝑖
we

use instead of 𝑎𝑖 and 𝜙𝑖 , respectively.

B CHANNEL IMPACT MODELING
Multipath. In a multipath environment, the received signal is the
sum of the signals propagating through different paths (rays). To
simplify and support the analysis of the channel impact towards fin-
gerprint features, we use a two-ray modelℎ(𝑡) = 𝜌0𝛿 (𝑡) +𝜌1𝛿 (𝑡−𝜏)
to approximate the propagation of electromagnetic waves. Specif-
ically, the first ray arrives with amplitude 𝜌0 and the second ray
arrives 𝜏 seconds later with amplitude 𝜌1. In this case, the baseband
signal 𝑢 (𝑡) composed of imperfect symbols 𝑆 is received as:

𝑟 (𝑡 ) = 𝜌0𝑢 (𝑡 )𝑒 𝑗2𝜋 𝑓 𝑡 + 𝜌1𝑢 (𝑡 − 𝜏)𝑒 𝑗2𝜋 𝑓 (𝑡−𝜏 ) (10)

The receiver samples the signal as a discrete-time series which is
then further processed. With the help of automatic gain control
(AGC), the amplitudes of the two rays are normalized by 𝜌 =

𝜌1
𝜌0
. We

extract symbols 𝑆 ′[𝑘] at timestamp 𝑘𝑇𝑆 + 𝑡∗ where𝑇𝑆 is the symbol
duration. Because of the delay of the second ray, 𝑆 ′[𝑘] might not
only be dependent on 𝑆 [𝑘] but also 𝑆 [𝑘 − 1] if 𝑡∗ < 𝜏 :

𝑆′ [𝑘 ] = 𝑆 [𝑘 ] · 𝑒 𝑗2𝜋 𝑓 𝑡∗ + 𝑆 [𝑛] · 𝜌𝑒 𝑗2𝜋 𝑓 (𝑡∗−𝜏 ) , (11)

where 𝑛 = 𝑘 − 1 if 𝑡∗ < 𝜏 and 𝑛 = 𝑘 else. At frequency synchroniza-
tion, the receiver aligns with the carrier frequency to compensate
𝑒 𝑗2𝜋 𝑓 𝑡

∗
. Then the received symbols 𝑆 ′ can be statistically estimated

by the symbols in the frame payload as below, where 𝛼 = 𝜏
𝑇𝑠

is the
intersymbol interference coefficient.

𝑆′ ≈ {𝑆𝑖 + (1 − 𝛼)𝜌𝑒−𝑗2𝜋𝜏𝑆𝑖 + 𝜌
𝛼

𝑀
𝑒−𝑗2𝜋𝜏

𝑀∑︁
𝑚=1

𝑆𝑚 }, (12)

where 𝑆𝑖 = 𝐴𝑖𝑒
𝑗Φ𝑖 + 𝑎𝑖𝑒

𝑗𝜙𝑖 . Assuming the symbols having equal
probability of being chosen, we have

∑𝑀
𝑚=1𝐴𝑖𝑒

𝑗Φ𝑖 = 0 and can
rewrite the received symbols as:

𝑆′ ≈ {(1 + (1 − 𝛼)𝜌𝑒−𝑗2𝜋𝜏 ) (𝐴𝑖𝑒
𝑗Φ𝑖 + 𝑎𝑖𝑒 𝑗𝜙𝑖 ) + 𝜌𝛼

𝑀
𝑒−𝑗2𝜋𝜏

𝑀∑︁
𝑚=1

𝑎𝑚𝑒 𝑗𝜙𝑚 }

(13)
In other words, the observed symbol 𝑆 ′

𝑖
is a linear combination of

the phasor expressing the imperfect symbol 𝑆𝑖 and the symbol error
vector from the other symbols due to inter symbol interference (ISI)
and the residual channel response.

Based on the insights from the analytic model in Equation 13
we expect the symbol error to increase with a higher second path
gain 𝜌 and a longer delay 𝜏 . In particular, we have a dominating
component scaling the phasor 𝑆𝑖 (fingerprint) relative to the gain 𝜌

and a phase shift depending on 𝜏 . The impact is thereby dependent
on the individual intrinsic hardware imperfection, and the residual
term including all symbols has limited impact. Translated into
fingerprint features, we can expect the magnitude error to depend
on both gain 𝜌 and delay 𝜏 of the second multipath ray, while the
phase error is expected to be more dependent on the delay 𝜏 alone.
As the same scaling and phase shift apply to all symbols, we expect
their impact to cancel out and not impact the I/Q offset.
Signal to Noise Ratio. The second impact factor is the signal to
noise ratio (SNR), which is an essential indicator of signal quality.
We use an AWGN to model the interference. Then the received
symbol set 𝑆 ′ can be written as:

𝑆′ = {𝐴𝑖𝑒
𝑗Φ𝑖 + 𝑎𝑖𝑒

𝑗𝜙𝑖 + 𝑛}, (14)



where 𝑛 ∼ N(0, 𝜎2) adds to both the 𝐼 and 𝑄 component and thus
impacts both the symbol amplitude and phase.
Doppler. The mobility of transmitters/receivers results in a Doppler
spread in the observed frequency. The Doppler frequency shift is
given by Δ𝑓 =

𝑣𝑐𝑜𝑠 (𝜃 )
𝑐 𝑓 , where 𝑐 is the velocity of signal propaga-

tion and the object is moving at a spatial angle 𝜃 with velocity 𝑣 [9].
In the analytical model, we consider the Doppler shift for a single
ray.

𝑟 (𝑡 ) = 𝑢 (𝑡 )𝑒 𝑗2𝜋 (𝑓 +Δ𝑓 )𝑡 (15)
The received symbols 𝑆 ′ is affected by the Doppler shift residual
phase noise 𝜙𝑑 :

𝑆′ = {𝑒 𝑗Δ𝜙𝑑 (𝐴𝑖𝑒
𝑗Φ𝑖 + 𝑎𝑖𝑒

𝑗𝜙𝑖 ) } (16)

C EXPERIMENT DETAILS

Figure 17: Benchmark experiment in anechoic chamber and 40 devices.
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